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A temporal, inviscid, linear stability analysis of a liquid jet and the co-flowing gas
stream surrounding the jet has been performed. The basic liquid and gas velocity
profiles have been computed self-consistently by solving numerically the appropriate
set of coupled Navier–Stokes equations reduced using the slenderness approximation.
The analysis in the case of a uniform liquid velocity profile recovers the classical
Rayleigh and Weber non-viscous results as limiting cases for well-developed and
very thin gas boundary layers respectively, but the consideration of realistic liquid
velocity profiles brings to light new families of modes which are essential to explain
atomization experiments at large enough Weber numbers, and which do not appear in
the classical stability analyses of non-viscous parallel streams. In fact, in atomization
experiments with Weber numbers around 20, we observe a change in the breakup
pattern from axisymmetric to helicoidal modes which are predicted and explained
by our theory as having an hydrodynamic origin related to the structure of the
liquid-jet basic velocity profile. This work has been motivated by the recent discovery
by Gañán-Calvo (1998) of a new atomization technique based on the acceleration
to large velocities of coaxial liquid and gas jets by means of a favourable pressure
gradient and which are of emerging interest in microfluidic applications (high-quality
atomization, micro-fibre production, biomedical applications, etc.).

1. Introduction
The phenomenon of the breaking up of a liquid jet into drops has been investigated

both theoretically and experimentally since Rayleigh (1878). In Rayleigh’s pioneering
theoretical investigation of the phenomenon, a temporal inviscid stability analysis of
a liquid cylinder flowing with a uniform velocity was carried out, and the growth rates
as function of the wavelength of the perturbation were found. The results deduced
from this simple model are found to agree very well with experiments if the velocity
of the liquid jet is sufficiently low, because then the breakup process is dominated by
capillary effects and the influence of the external air stream can be neglected. At higher
relative liquid–gas velocities, such as those common in many atomization processes
of technological interest (sprays, fuel injectors, etc.), Rayleigh’s results cease to be
valid, and the coupling of the liquid jet to the surrounding air must be considered
in the stability analysis. The first step in this direction was taken by Weber (1931),
who considered the stability of a liquid jet with a coaxial gas stream both flowing
with uniform, but different, velocities. His results predicted higher growth rates and
shorter breakup wavelengths than those observed in experiments, which led Sterling
& Sleicher (1975) to modify Weber’s analysis by including viscosity effects through an
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ad hoc empirical coefficient in the equations for the perturbations of the gas stream,
which was adjusted to fit the experimentally determined curve of the jet breakup
length versus jet velocity. A weak point in both Weber’s and Sterling & Sleicher’s
analyses was that of considering highly simplified (uniform) liquid and gas basic
flows. In this work we aim to show by a three-step process what the importance is of
either the basic liquid or the gas velocity profiles (or both) in the breakup dynamics
of co-flowing liquid–gas jets: (i) first we consider the basic velocity profile of the gas
only, with a uniform liquid velocity – model A, (ii) then we consider the liquid velocity
profile only, with an unperturbed coaxial gas stream – model B, and finally (iii) we
consider the velocity profiles of both the liquid and the gas – model C. In this way,
our results will show that if basic velocity profiles are computed in a self-consistent
manner, it is not necessary to appeal to viscosity effects in the perturbations to explain
the observed increase in the breakup lengths (or equivalently, lower growth rates) over
those predicted by Weber’s theory at high liquid jet velocities.

The stability of liquid jets has also been considered from the point of view of spatial
stability theory for both the Rayleigh and Weber problems. Although for the case
of open flows, such as mixing and boundary layers over rigid walls, spatial stability
results seem to be in better agreement with experiments than those obtained from
temporal analyses, for the case of liquid jets at sufficiently high Weber numbers (based
on the jet velocity) Keller, Rubinow & Tu (1973) found that for Rayleigh’s case both
types of analyses lead to essentially the same results; thereafter Lin & Kang (1987)
considered the influence of the external gas stream and came to the same conclusion
if the Weber number is based on the relative liquid–gas velocity. All the previous
models considered uniform liquid and gas velocity profiles, in spite of the analyses
performed by Rayleigh (1880) and Miles (1957, 1959a, b), which pointed out the
importance of the role played by the shear layer velocity profile in the development
of the instability in an homogeneous medium (Rayleigh) and for the wind generation
of waves (Miles). The importance of stability models that account for both liquid
and gas basic velocity profiles has been further stressed by Lin & Reitz (1998) and
taken into account systematically only in recent works. Thus, Villermaux (1998) has
extended the analysis of the stability of a piecewise linear velocity profile performed
by Rayleigh to the case in which there exists a density jump across the interface. Due
to the much larger momentum of the lighter phase considered in this work, only the
velocity profile of the gas shear layer, characterized by its thickness, is considered
and a remarkable agreement is found with experimental results. Similarly, Lasheras,
Villermaux & Hopfinger (1998) and Lasheras & Hopfinger (2000) have been able to
give the scaling of the shedding frequencies observed in their co-flowing liquid–gas
experiments through knowledge of the gas shear layer thickness. Another relevant
work, more theoretically oriented, is that of Lin & Chen (1998) who performed a
spatial stability analysis of an exact solution of the Navier–Stokes equations. In their
analysis they took into account both liquid and gas velocity profiles without neglecting
viscosity and were able to identify the Rayleigh and Taylor modes of instability for
different basic flow regimes and explained, using an energy balance, the sources of
energy for the development of each type of instability.

Our work is motivated by the recent discovery by Gañán-Calvo (1998) of a new
atomization technique based on the acceleration to large velocities of coaxial liquid
and gas jets by means of a favourable pressure gradient. The development of this
technique demands an accurate prediction of the droplet-to-jet diameter ratio from
the breakup of the laminar capillary microjets produced by that process which have a
gas-to-liquid momentum ratio very close to unity. Using a high-speed video camera,
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Figure 1. Different atomization regimes depending on the value of the Weber number.

we observe that for low Weber numbers, Rayleigh predictions agree with experiments
(see figure 1a). However, for increasing Weber numbers, our observations (breakup
modes) do not agree with any of the existing models assuming uniform gas and liquid
velocity profiles. More complete models of liquid jets considering only the actual gas
velocity profile (Villermaux 1998), which succeed in predicting frequency breakup of
large gas-to-liquid momentum ratio coaxial jets, or models that consider both liquid
and gas velocity profiles in a very specific situation (Lin & Chen 1998), are unable to
describe satisfactorily the modes observed in our experiments (see figures 1b and 1c).

These considerations suggest that the observed modes can only be explained by a
model of the gas-liquid jet which corresponds more closely to the conditions of our
experiments. For that purpose the basic velocity profiles needed for the analysis will
be computed self-consistently by solving numerically the parabolized (or, equivalently,
the boundary layer type) Navier–Stokes equations. We will then perform a temporal
stability analysis since, as pointed out above, it seems justified given the high velocities
(high Weber numbers) involved in our problem. According to classical treatments of
the stability of parallel flows in the cases in which the instability mechanism is
non-viscous, we will neglect the influence of both liquid and gas viscosities in the
perturbations by restricting ourselves to large values of the parameter ωλ2/νg where ω
is the frequency of the perturbation, λ its wavelength and νg the kinematic viscosity of
the gas; neither have we considered the effects of compressibility in both the basic and
perturbed flows. These assumptions must be either validated or refuted a posteriori
after comparison of the theoretical results with experiments. It will be shown that, in
spite of the simplifications made, our model is able to explain the different atomization
regimes observed in experiments and a rich variety of modes, apparently unexplored
in the literature, appear due to the consideration of the structure of basic flow in both
the liquid and gas streams; the well-known results for the case of uniform streams
are recovered as a limiting case when the thicknesses of the boundary layers which
develop in the liquid and the surrounding gas tend to zero.

The structure of the paper is as follows. In § 2 we formulate the equations and
boundary conditions governing the basic flow of the liquid and gas stream, and explain
the numerical procedure used to solve the problem. In § 3 we analyse the influence
of the parameters of the problem and conditions at the initial station (exit of the
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pressurized chamber) on the basic solution and make comparisons with experimental
results. The stability analysis is formulated in § 4, where the equations governing the
perturbations are found and the numerical method to solve for the eigenvalues of
the problem is described. As was pointed out above, in order to get better insight
into the nature of the different kinds of modes found when the stability equations
are applied to the basic liquid and gas flows computed in § 3, we have first solved
the stability equations for two simplified models in § 5.1 and § 5.2. The first model
considers the stability of a liquid jet with uniform velocity surrounded by a gas stream
whose basic structure we compute numerically using the method of § 3. For this model
we find three different families of modes: a capillary axisymmetric one, a helicoidal
one with excitation frequencies of the order of those of the capillary family, and a
third group of modes, which will be called wake modes, also of helicoidal nature and
whose excitation frequencies are of the order of U∞/R, where U∞ is the free-stream
gas velocity and R the liquid jet radius. With this simplified model the classical
Rayleigh and Kelvin–Helmholtz results are recovered in appropriate limits. In § 5.2
we consider a second model for which the basic velocity profiles are more realistic
than those of the previous model in the sense that they already take into account
the coupling between the liquid and gas basic flows. The simplification in this model,
which considers realistic basic velocity profiles, consists in introducing perturbations
in the liquid jet while holding the gas stream unperturbed. We then find, besides the
capillary family found in § 5.1, two different families of modes, one axisymmetric and
the second one helicoidal, both associated with the velocity gradients in the liquid. The
five different families found previously in the simplified models of § 5.1 and § 5.2 are
the ones present in the complete model considered in § 5.3, where the more realistic
basic velocity profiles computed in § 3 are used. In § 6 we compare the numerical
results obtained in § 5.3 with atomization experiments, and it will be shown that our
theory explains the general features observed in the jet breakup of our atomization
experiments. Finally, conclusions are presented in § 7.

2. Basic solution
The first step in performing the stability analysis is to find the basic velocity profiles

for the liquid and gas streams. Figure 2(a) is a sketch of the experimental atomization
device (Gañán-Calvo 1998) where it can be seen that the diameter of the orifice
of the pressurized chamber (of the order of 200µm) is much larger than that of
the liquid jet (of the order of 10µm). Thus, as a first approach to the problem, it
seems reasonable to neglect the effect over the liquid jet of the mixing layer (see
figure 2b) that develops in the region where gas velocities drop to zero. Therefore,
from now on we will focus on the simplified model of figure 2(c), where gas velocities
at infinity tend to a non-zero constant value. To write the equations which govern the
downstream evolution of both the liquid and gas flows we will find it convenient to
use the following set of dimensionless parameters and variables:

r =
r̂

R0

, z = Reg
−1 ẑ

R0

, u =
û

U∞
, v = Reg

v̂

U∞
, f =

f̂

R0

, pl =
p̂l

ρlU2∞
, (2.1)

We0 =
ρgU

2∞R0

σ
, M =

ρl

ρg
, ν =

νl

νg
, µ =

µl

µg
, (2.2)

where R0 is the radius of the jet at the initial station z = 0, U∞ is the velocity of
the gas at r → ∞, σ is the liquid–air surface tension, Reg = U∞R0/νg and We are
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Figure 2. Sketch of (a) the atomizer; (b) the liquid and gas velocity profiles at the exit of the
pressurized chamber; (c) the velocity profiles considered in this work.

respectively the Reynolds and Weber numbers for the gas flow and f̂(z) is the radius
of the liquid jet. Since the geometry is slender, that is δ/L � 1 where δ and L
are characteristic lengths in the radial and axial directions respectively, the steady
Navier–Stokes equations governing the downstream evolution of the gas and liquid
streams can be written in the well-known slender (parabolized or boundary-layer)
approximation:

r
∂ug

∂z
+
∂(rvg)

∂r
= 0, (2.3)

rug
∂ug

∂z
+ rvg

∂ug

∂r
=

∂

∂r

(
r
∂ug

∂r

)
, (2.4)

∂ul

∂z
+

1

r

∂(rvl)

∂r
= 0, (2.5)
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ul
∂ul

∂z
+ vl

∂ul

∂r
= −∂pl

∂z
+ ν

1

r

∂

∂r

(
r
∂ul

∂r

)
, (2.6)

pl − pg = (MWe0)
−1 1

f
, (2.7)

where we have used the variables and parameters defined in (2.1)–(2.2). System
(2.3)–(2.7) must be solved subject to the following boundary conditions:

z = 0 : ul = ul(r), ug = ug(r), (2.8)

r = 0 : vl = 0,
∂ul

∂r
= 0, (2.9)

vl =
∂f

∂z
ul, (2.10)

r = f : ug = ul, vg = vl ,
∂ug

∂r
= µ

∂ul

∂r
, (2.11)

r →∞ : ug → 1, (2.12)

where condition (2.8) specifies the liquid and gas velocity profiles at the initial station
z = 0, (2.9) expresses the regularity conditions at the jet axis due to the axial symmetry
of the problem, (2.10) and (2.11) express respectively the free surface condition and
the continuity of the velocities and shear stress at the jet surface, and (2.12) represents
the matching at r → ∞ of the axial gas velocities to that of the external stream. For
computational purposes it proves convenient to eliminate the radial velocities vl and
vg from the momentum equations (2.4) and (2.6) using the continuity equations (2.3)
and (2.5) respectively; equations (2.4) and (2.6) then read

rug
∂ug

∂z
+

(
rvg|r=f −

∫ r

f

r
∂ug

∂z
dr

)
∂ug

∂r
=

∂

∂r

(
r
∂ug

∂r

)
, (2.13)

ul
∂ul

∂z
− 1

r

(∫ r

0

r
∂ul

∂z
dr

)
∂ul

∂r
= −∂pl

∂z
+ ν

1

r

∂

∂r

(
r
∂ul

∂r

)
. (2.14)

Also, it is numerically advantageous to rewrite equation (2.13) in terms of the new
independent variables

ζ = ln(z + z0), η =
r − f

(z + z0)
1/2
, (2.15)

and equation (2.14) in terms of the independent variables

ζ = ln(z + z0), ξ =
1

2

r2

f2
, (2.16)

where z0 is a constant which will be determined in § 3 from consideration of the
appropriate velocity profiles ul and ug at the initial station z = 0. In terms of the new
variables (2.15)–(2.16) equations (2.13) and (2.14) read

(f + exp (0.5ζ)η)ug
∂ug

∂ζ
−
[∫ η

0

(f + exp (0.5ζ)η)
∂ug

∂ζ
dη

]
∂ug

∂η

=

[
exp (0.5ζ) +

1

2

∫ η

0

(f + 2 exp (0.5ζ)η)ug dη

]
∂ug

∂η

+(f + exp (0.5ζ)η)
∂2ug

∂η2
+
∂f

∂ζ

(∫ η

0

ug dη

)
∂ug

∂η
, (2.17)
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ul
∂ul

∂ζ
−
(∫ ξ

0

∂ul

∂ζ
dξ

)
∂ul

∂ξ
=

2 exp (ζ)

f2
ν

(
∂ul

∂ξ
+ ξ

∂2ul

∂ξ2

)
+
∂f

∂ζ

[
1

MWe0f2
+

2

f

(∫ ξ

0

ul dξ

)
∂ul

∂ξ

]
, (2.18)

and the boundary conditions (2.8) and (2.10)–(2.12) become

ζ = ζ0 = ln(z0) : ug = ug(η), ul = ul(ξ), (2.19)

η = 0, ξ = 1/2 : ul = ug,
∂ug

∂η
= µ

exp (0.5ζ)

f

∂ul

∂ξ
, (2.20)

2f
∂f

∂ζ

∫ 1/2

0

ul dξ + f2

∫ 1/2

0

∂ul

∂ζ
dξ = 0, (2.21)

r →∞ : ug → 1. (2.22)

Observe that the free surface condition (2.21) can be written as

2
∂f

∂ζ
q + f3

∫ 1/2

0

∂ul

∂ζ
dξ = 0, (2.23)

where q =
∫ f

0
rul dr = f2

∫ 1/2

0
ul dξ is the dimensionless liquid flow rate. To solve

system (2.17)–(2.18) we have employed a method of lines suggested by the parabolic
nature of the equations. According to this method a system of ordinary differential
equations with ζ as independent variable is obtained by discretizing in (2.17)–(2.18) the
radial derivatives and integrals; the resulting system is then integrated with a marching
scheme in the axial direction (we have used a variable-step-size Runge–Kutta method).
Using centred finite differences for the radial derivatives and discretizing the integrals
in (2.17)–(2.18) by the trapezoidal rule we obtain for the gas domain

(f + exp (0.5ζ)ηi)ugi
∂ugi

∂ζ

−
[
k=i∑
k=0

(1− 0.5δk0 − 0.5δki)hg(f + exp (0.5ζ)ηk)
∂ugk

∂ζ

]
ug(i+1) − ug(i−1)

2hg

=

[
exp (0.5ζ) + 1/2

k=i∑
k=0

(1− 0.5δk0 − 0.5δki)hg(f + 2 exp (0.5ζ)ηk)ugk

]

×ug(i+1) − ug(i−1)

2hg
+ (f + exp (0.5ζ)ηi)

ug(i+1) − 2ugi + ug(i−1)

h2
g

+

[
k=i∑
k=0

(1− 0.5δk0 − 0.5δki)hgugk

]
ug(i+1) − ug(i−1)

2hg

∂f

∂ζ
,

i = 1, . . . G− 1, (2.24)

where δij is the usual δ of Kroenecker, hg is the discretization step in the gas region
and ugG = 1, and for the liquid domain

ulj
∂ulj

∂ζ
−
[
k=j∑
k=0

(1− 0.5δk0 − 0.5δkj)hl
∂ulk

∂ζ

]
ul(j+1) − ul(j−1)

2hl
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=
2ν exp (ζ)

f2

(
ul(j+1) − ul(j−1)

2hl

)
+

2ν exp (ζ)

f2

(
ξj
ul(j+1) − 2ulj + ul(j−1)

h2
l

)

+
∂f

∂ζ

[
1

MWe0f2
+

2

f

[
k=j∑
k=0

(1− 0.5δk0 − 0.5δkj)hlulk

]
ul(j+1) − ul(j−1)

2hl

]
,

j = 1, . . . L− 1, (2.25)

where hl is the discretization step and G and L are the number of discretization points
in the radial direction (lines) for the gas (labelled by the index i) and for the liquid
(labelled by the index j) respectively. The equation for the evolution of the velocity at
the axis ul0, corresponding to the node j = 0, can be obtained from (2.18) by making
ξ = 0 and discretizing ∂ul/∂ξ using forward second-order differences:

ul0
∂ul0

∂ζ
=

(
2ν exp (ζ)

f2

)
4ul1 − 3ul0 − ul2

2hl
+

1

MWe0f2

∂f

∂ζ
. (2.26)

Also, the equation for the evolution of the velocity at the jet surface (j = L, i =
0)ug0 = ulL can be obtained by taking the ζ-derivative of the second equation in
(2.20), that expresses the continuity of the shear stress at the surface,

η = 0, ξ = 1/2 : 4
∂u1g

∂ζ
− ∂u2g

∂ζ
− 3

∂u0g

∂ζ
+ F

(
4
∂ul(L−1)

∂ζ
− ∂ul(L−2)

∂ζ
− 3

∂ulL

∂ζ

)
− F(4ul(L−1) − ul(L−2) − 3ulL)

1

f

∂f

∂ζ

= −F
2

(4ul(L−1) − ul(L−2) − 3ulL), (2.27)

where F = µhg exp (0.5ζ)/(hlf) and the η-derivatives at the surface have been dis-
cretized forward (gas domain) while the ξ-derivatives have been discretized backwards
(liquid domain). Finally, the differential equation for f(ζ) is obtained from (2.23) as

f3

[
j=L∑
j=0

(1− 0.5δj0 − 0.5δjL)hl
∂ulj

∂ζ

]
+ 2

∂f

∂ζ
q = 0. (2.28)

System (2.24)–(2.28) must be integrated subjected to the initial condition

ζ = ζ0 : ugi = ug(ηi), ulj = ul(ξj), i = 0...G, j = 0 . . . L. (2.29)

In order to obtain efficiently the derivatives ∂ugi/∂ζ and ∂ulj/∂ζ in (2.24)–(2.28),
observe that these equations can be expressed in matrix form as

A · ∂ug
∂ζ

= b0 + b1

∂ug0

∂ζ
+ b2

∂f

∂ζ
, (2.30)

B · ∂ul
∂ζ

= c0 + c1

∂f

∂ζ
, (2.31)

where A,B are lower triangular matrices and b0, b1, b2, c0 and c1 are vectors whose
elements depend on the values of ug and ul at the given station. Thus, the solution of
(2.30) can be obtained as functions of ∂ug0/∂ζ and ∂f/∂ζ as

∂ug
∂ζ

=
∂u0

g

∂ζ
+
∂u1

g

∂ζ

∂ug0

∂ζ
+
∂u2

g

∂ζ

∂f

∂ζ
, (2.32)
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where ∂u0
g/∂ζ, ∂u

1
g/∂ζ and ∂u2

g/∂ζ are the solutions of A · ∂u0
g/∂ζ = b0,A · ∂u1

g/∂ζ = b1

and A · ∂u2
g/∂ζ = b2 respectively. Similarly the solutions of (2.31) can be obtained as

a function of ∂f/∂ζ as

∂ul
∂ζ

=
∂u0

l

∂ζ
+
∂u1

l

∂ζ

∂f

∂ζ
, (2.33)

where ∂u0
l /∂ζ and ∂u1

l /∂ζ are the solutions of B · ∂u0
l /∂ζ = c0 and B · ∂u1

l /∂ζ = c1

respectively. Finally, the values of ∂ug0/∂ζ and ∂f/∂ζ are obtained by substitut-
ing the results of (2.32) and (2.33) into equations (2.27) and (2.28). Observe that
∂u0

g/∂ζ, ∂u
1
g/∂ζ, ∂u

2
g/∂ζ and ∂u0

l /∂ζ, ∂u
1
l /∂ζ can be obtained very efficiently since A

and B are lower triangular. In order to start up the numerical integration it is, of
course, necessary to specify velocity profiles for both the liquid and the gas at the
initial station z = 0. The problem of the initial conditions will be discussed at length
in the next section.

3. Numerical and experimental results for the basic flow
Equations (2.24)–(2.28) show that the downstream evolution of the liquid–gas flow

depends on the parameters MWe0, the ratios of the kinematic and dynamic viscosities,
ν and µ respectively, as well as on the initial conditions at the initial station z = 0.
In order to reduce the dimension of the parametric space, we will restrict ourselves,
without loss of generality, to the representative case of atomization of water into air.
Therefore, the parameter µ will be fixed and, to simplify further the model, ν will
also be considered as constant, which means that the modification of this parameter
due to variations in the density of the gas at the exit of the atomizer, which are
produced by the different pressures used in experiments, will be neglected. Thus, we
will consider only the influence on the basic flow of the parameter MWe0 and of the
initial conditions, which will be discussed next.

To obtain the exact boundary conditions at the initial station one should solve
the complicated problem of the evolution of the gas–liquid flow from the pressurized
chamber up to the exit orifice (initial station z = 0 for our problem), a task which
is obviously outside the scope of this work. Instead, we have considered physically
plausible initial conditions for the velocity profiles of both the gas and the liquid each
containing a free parameter, related to the respective thicknesses of the boundary
layers which have been adjusted by comparing the computed profiles with the ones
observed experimentally. In effect, the acceleration of the flow from the pressurized
chamber up to the exit orifice (see figure 2a) can be considered nearly isentropic,
since the residence time of the fluid particles in the entrance region is so short that
viscosity effects remain confined to a narrow region near to the gas–liquid boundary.
Therefore we will assume that the initial liquid velocity profile is flat except in an
annular region next to the surface where it is assumed to be parabolic, namely

ul = uc, 0 6 ξ 6 1
2
(1− ∆)2, (3.1)

ul = uc + A[ξ − 1
2
(1− ∆)2], 1

2
(1− ∆)2 6 ξ 6 1

2
, (3.2)

where uc, which is not a free parameter, can be computed in terms of the pressure
difference between the pressurized chamber and the atmosphere by simply using
Bernouilli’s equation (isentropic acceleration of the jet centreline), ∆ is a free parameter
which determines the thickness of the region where the profile is not constant, and A
will be determined from the boundary conditions at the jet surface. In the same vein,
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Figure 3. Downstream evolution of the liquid jet radius at MWe0 = 5000 and 20 000.

we will assume a Blasius-type profile for the gas boundary condition at z = 0, which
is obtained from (2.17) in the limit of ζ → −∞ and ∂f/∂ζ = 0, namely

∂2ug

∂η2
+

1

2

(∫ η

0

ug dη

)
∂ug

∂η
= 0, η > 0, (3.3)

which must be integrated in η subject to the boundary conditions (2.20)

η = 0 : ug = ul = uc + A[ 1
2
− 1

2
(1− ∆)2],

∂ug

∂η
=

exp (0.5ζ0)

f
µ
∂ul

∂ξ
=
A

f
exp (0.5ζ0)µ

(3.4)
where f = 1 in the above formulas. Condition ug(η → ∞) → 1 determines A in (3.4)
for fixed values of the free parameters ∆ and ζ0 (z0 = exp (ζ0)). Notice that the gas
velocity at infinity is known from the compressible isentropic expansion from the
stagnant pressure in the chamber up to the atmospheric pressure at the nozzle exit.

To analyse the influence of the Weber number on the basic flow, we have integrated
(2.24)–(2.28) for a given initial condition of the form (3.1)–(3.4) for several values
of MWe0 lying in the range 5000 < MWe0 < 20 000. Figure 3 shows how weakly
the basic flows depend on this parameter; therefore we will fix MWe0 = 10 000, and
focus in the following on the assumed initial conditions (3.1)–(3.4) by performing a
sensitivity analysis with respect to the parameters ∆ and ζ0.

Figure 4(b) shows the influence on the development of the flow of the initial liquid
velocity profiles shown in figure 4(a) for a fixed value of ζ0. It can be observed
that the liquid jet radius decreases slower for larger ∆ (thickness of the liquid
boundary layer) since the initial liquid velocities are higher (and consequently also
the jet axial momentum) at the jet surface. The evolution of the jet is represented
in figure 4(d) for the different gas boundary layer velocity profiles represented in
figure 4(c) and characterized by their respective thickness δ defined conventionally
as ūg(r̄ = f̄(1 + δ)) = 0.99Ug∞; notice from (3.4) that for fixed ∆, the thickness δ
depends only on the free parameter ζ0. As expected, the jet radius decreases slower
for thicker boundary layers. The downstream evolution of both the liquid and gas
velocity profiles is represented in figures 5(a) and 5(b) for the cases ∆ = 0.1 and
δ = 0.15 which, as will be seen shortly, fit well the experimental observations. Notice
in these figures the growth of the gas boundary layer and the acceleration of the liquid
due to the transfer of axial momentum from the gas towards the liquid; observe that
after few diameters downstream of z = 0 viscous diffusion renders the liquid velocity
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Figure 4. (a) Initial velocity profiles for the liquid jet; (b) downstream evolution of liquid jet radius
for the initial conditions given in (a) and δ = 0.15; (c) initial velocity profiles for the gas stream;
(d) evolution of the liquid radius for the initial conditions given in (c) and ∆ = 0.1.
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Figure 5. (a) Evolution of the liquid jet velocity profiles for δ = 0.15 and ∆ = 0.1; (b) evolution of
the gas velocity profiles for the same initial conditions as in (a).

profiles parabolic. Other quantities of interest such as the tangential stress and the
velocity on the jet surface are represented in figure 6.

3.1. Experimental setup and comparison with numerical results

In order to determine the initial velocity profiles from experiments, we will perform
measurements of the downstream evolution of the jet radius for different pressure
drops between the chamber and the atmosphere and different water flow rates. The
liquid jet shape is captured using a CCD camera connected to a microscope at the
maximum magnification, in order to get the best resolution for the jet radius. Since
the whole undisturbed jet length cannot be present in the same image, the atomizer
is placed in a micro-positioner with a precision of 0.1µm in order to equalize the
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Figure 6. Downstream evolution of (a) the shear stress at the liquid surface; (b) the free surface
velocity.

total liquid jet length from consecutive images and to measure distances in a very
precise way. The next step is to measure the number of pixels of the liquid jet, and
for this purpose the images have been processed, fixing a threshold grey level beyond
which all the greys are considered as black and below which all greys are considered
as white. Saving these images in a proper Post Script format it is easy to measure
the number of pixels of the liquid jet at each axial station. Once the images are
superposed a liquid jet shape like the one in figure 7 is obtained. Since our purpose is
to compare with numerical results, an hyperbolic fit of fourth order is performed to
all the images like that in figure 7. Figure 8(a) shows the numerical and experimental
solution of the jet radius for a pressure drop of 10 KPa and for different flow rates
Q. For each Q and for a given pressure drop (which determines uc) the parameter ∆
has been adjusted in such a way that (3.1)–(3.2) provide the required Q. Solid lines
in figure 8(a) show the evolution of the jet shape for two pairs of values (∆, ζ0) – or
which is the same (∆, δ0) – with ∆ adjusted by the flow rate requirement in each case as
explained above. Figure 8(b) shows the evolutions of the experimental and numerical
results for a different pressure drop, namely 20 KPa; observe that the agreement
is much better than in figure 8(a), in particular the experimental Q = 30 ml h−1 is
very well reproduced numerically for values of ∆ = 0.15 and δ0 = 0.5. The error in
the measurements can be related mainly to the facts that: (i) in spite of using the
microscope the liquid jet radius contains a limited number of pixels (50–100) and the
resolution maybe not high enough, (ii) the smallness of the liquid jets (∼ 30–60 µm)
makes it difficult to focus the images, (iii) the fixed grey level introduce errors in the
liquid radius. Nevertheless, since our main objective is to obtain an estimation of the
parameters determining the initial conditions for the liquid and the gas streams which
allows us to compute a realistic downstream evolution, we consider that the above
procedure is able to provide us with the required information.

4. Stability analysis
Once the basic velocity profiles have been computed, we will analyse the stability of

the equilibrium solutions obtained. In an initial approach to the problem, and in order
to keep matters simple while still retaining the relevant physical phenomena, we have
performed a standard temporal, inviscid stability analysis of locally parallel streams.
Although it is known that the exact solution of the linear signalling problem leads, in
general, to the study of spatial eigenvalues (Huerre & Monkewitz 1985), our approach
can be justified if one takes into account that the temporal and spatial analysis yield
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and ∆p = 20 KPa. (Ul = 6.3 m s−1 and Ug = 173 m s−1).

almost identical results for the growth rate and frequency of the perturbations (Li
1995). The assumption of inviscid perturbations demands that ωλ2/νg � 1, where ω
and λ are the typical frequency and wavelength of the perturbation and νg the gas
kinematic viscosity (note that generally νl < νg for liquid with viscosities close to
that of water); as will be shown later, this parameter (ωλ2/νg) turns out to be of the
order of 10 in our analysis. The assumption of locally parallel streams requires that
the typical axial distance for variations of the basic velocity profiles be much larger
than the wavelength of the perturbation (λ/U∞∂Ug/∂z � 1); this hypothesis, to be
confirmed later, allows us to consider the variable z as a parameter characterizing the
values of the basic flow in the perturbation equations. Also, since the stability analysis
is temporal, we will take advantage of the fact that the results will not change if the
perturbation equations are expressed in a Galilean reference frame moving with the
jet surface velocity at the given local z-station; in this frame the basic profiles used
in the stability analysis are sketched in figure 9.

As usual, we decompose both liquid and gas velocities and pressures into this basic
part and a perturbation

p = p0(z) + p̂(r, θ, z, t), R = R0(z) + R̂(θ, z, t), u(r, θ, z, t) = (Ū0(r) + û, v̂, ŵ), (4.1)

where Ū0, R0 and p0 are the undisturbed velocity distribution, jet radius and pressure
at station z respectively; û, v̂, ŵ are the perturbed axial, radial and azimuthal velocity
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Figure 9. Sketch of the velocity profiles and variables used in the stability analysis at a generic
downstream station.

components respectively and p̂ and R̂ the perturbed pressure and jet radius. Quantities
referring to the gas (liquid) stream will be denoted with the subscript gl. Note that
z is an independent variable for the perturbation, while U0 and R0, as usual, are
considered to depend parametrically on the axial distance.

The equations governing the perturbed quantities defined in (4.1), can be obtained
from the linearized Navier–Stokes equations as

∇ · û = 0, (4.2)

−1

ρ
∇2p̂ = 2

dÛ0

dr

∂v̂

∂z
, (4.3)

∂v̂

∂t
+ Û0

∂v̂

∂z
= −1

ρ

∂p̂

∂r
, (4.4)

∂ŵ

∂t
+ Û0

∂ŵ

∂z
= − 1

ρr

∂p̂

∂θ
, (4.5)

where, for convenience, the axial momentum equation has been replaced by the
divergence of the momentum equation. Equations (4.2)–(4.5), of which there are two
sets, one for the liquid and one for the gas, must be solved subject to regularity
boundary conditions at the axis and at infinity:

r = 0 : ûl 6= ∞, p̂l 6= ∞, (4.6)

r →∞ : ûg → 0, p̂g → 0, (4.7)

together with the linearized free surface boundary conditions

r = R0(z) : p̂l − p̂g = −σ
(
R̂

R2
0

+
∂2R̂

∂z2
+

∂2R̂

R2
0∂θ

2

)
, (4.8)
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v̂l = v̂g =
∂R̂

∂t
. (4.9)

We shall look for solutions of (4.2)–(4.9) of the form

(û, v̂, ŵ, p̂, R̂) = (ū(r), v̄(r), w̄(r), p̄(r), R̄) exp (i (k̄z − Ω̄t+ mθ)), (4.10)

which when introduced into (4.3), and after eliminating v̄(r) using (4.4), provide the
equation for the gas pressure

1

r

d

dr
(r

dp̄g
dr

)− 2
k̄

(Ū0gk̄ − Ω̄)

dŪ0g

dr

dp̄g
dr
−
(
k̄2 +

m2

r2

)
p̄g = 0, (4.11)

and, analogously, the equation for the liquid pressure

1

r

d

dr

(
r
dp̄l
dr

)
− 2

k̄

(Ū0l k̄ − Ω̄)

dŪ0l

dr

dp̄l
dr
−
(
k̄2 +

m2

r2

)
p̄l = 0. (4.12)

The boundary conditions (4.8)–(4.9) can be expressed in terms of the gas and liquid
pressures using the radial momentum equation (4.4) as

p̄l = p̄g − σ

R0
2
(1− k2R0

2 − m2)
1

ρgΩ̄2

dp̄g
dr
, (4.13)

dp̄l
dr

=
ρl

ρg

dp̄g
dr

. (4.14)

In terms of the dimensionless parameters and variables

M =
ρl

ρg
, We =

ρgU∞2R0

σ
, κ = k̄R0, (4.15)

x =
r − R0

R0δ(z)
, p =

p̄

ρgU2∞
, ω =

Ω̄

k̄U∞
, U(r) =

Ū0(r)

U∞
, χ =

r

R0

, (4.16)

equations (4.11)–(4.12) and boundary conditions (4.6)–(4.7) and (4.13)–(4.14) for the
perturbed pressures can be written as

d2pg

dx2
+

(
δ

1 + δx
− 2

Ug − ω
dUg

dx

)
dpg
dx
−
(
κ2δ2 +

m2δ2

(1 + δx)2

)
pg = 0, (4.17)

d2pl

dχ2
+

(
1

χ
− 2

Ul − ω
dUl

dχ

)
dpl
dχ
−
(
κ2 +

m2

χ2

)
pl = 0, (4.18)

x = 0, χ = 1 : κ2ω2

(
M

pl(1)

dpl/dχ(1)
− δ pg(0)

dpg/dx(0)

)
+We−1(1− κ2 − m2) = 0,

(4.19)

x→∞ : pg → 0, χ = 0, pl finite, (4.20)

where condition (4.19), which has been obtained by dividing (4.13) by (4.14), eliminates
free constants due to the linearity of the problem. The parameter We in (4.19) is the
well-known Weber number, which is the ratio of the dynamical to capillary pressures.
Notice that this parameter is based on the velocity relative to the moving frame U∞(z)
of the gas stream at infinity and on the unperturbed radius of the jet R0(z). The
parameter δ(z) is the dimensionless gas boundary layer thickness of the equilibrium
problem defined in § 3. The problem (4.17)–(4.20) does not have non-trivial solutions
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except for certain complex values of ω which satisfy the dispersion relation (4.19) for
given real values of κ, We and M. The dispersion relation also contains pl(1)/dpl/dχ(1)
and pg(0)/dpg/dx(0) which in turn are determined through integration of (4.17)–(4.18)
subject to the boundary conditions (4.20). To obtain pl(χ), equation (4.18) has been
integrated numerically from χ = χ0 � 1 (to avoid the singularity at χ = 0) up to
χ = 1 using starting values provided by the Frobenius method (Arfken & Weber
1995), namely

pl = 1 + χ0
2κ

2

4
,

dpl
dχ

= χ0

κ2

2
if m = 0, (4.21)

pl = χ0
m,

dpl
dχ

= mχ0
m−1 if m 6= 0. (4.22)

To obtain pg(x) we integrate equation (4.17) from x = 0 to x = ∞ taking into account
that, except for pg(0) and dpg/dx(0) which should be known ‘exactly’, the numerical
solution will unavoidably tend to the modified Bessel function of the first kind,
Im[κ(1 +δx)], which is the equation’s attractor at infinity, and thus will not satisfy the
boundary conditions at infinity. Nevertheless, due to a well-known result of the theory
of second-order linear ODEs (Arfken & Weber 1995), given any particular solution
n(x), obtained for example by integrating (4.17) from x = 0 with initial conditions

n(0) = 1,
dn

dx
(0) = 0, (4.23)

another independent solution of (4.17) can be constructed numerically from n(x) in
the form

pg(x) = n(x)

∫ x

∞

exp

(
−
∫ z

0

(
δ

δs+ 1
− 2dUg/ds

Ug − ω
)

ds

)
n(z)2

dz . (4.24)

Since n(x→∞)→∞ it is clear that pg(x→∞)→ 0. At x = 0, (4.24) yields

pg(0)

dpg/dx(0)
= − 1

ω2

∫ ∞
0

(Ug − ω)2

n(x)2(1 + δx)
dx. (4.25)

5. Numerical results
It is our objective in this section to show that the stability analysis of our simplified

basic model described above is able to explain the appearance of the different
atomization regimes observed in our experiments and to shed light on the physical
mechanisms that lead to the appearance of different instability modes. Therefore,
before considering the general case (that will be studied extensively in § 5.3), in which
the spectrum of eigenvalues is worked out numerically using the basic velocity profiles
of § 3, and in order to learn what is the specific role of the basic velocity profiles of
either the liquid or the gas, two simplified models, A and B, will be solved first.

Model A: a liquid jet of constant radius and uniform velocity profile surrounded by
a coaxial gas stream where the velocity profile is computed numerically as described
in § 2. In this model, both Rayleigh and Taylor atomization regimes are identified.
In the Rayleigh regime, the breakup wavelengths are of the order of the jet radius
and the instability is promoted by surface tension, whereas in the Taylor regime
the wavelengths of the disturbances are much smaller than the jet radius and the
instability mechanism is the work done by the gas pressure fluctuations over the
liquid surface in the absence of viscosity in the stability analysis (Lin & Chen 1998).
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These breakup regimes are found for different ranges of the value of the only free
parameter, δ (gas boundary layer thickness), since We and M are kept constant.
Besides, a new type of helicoidal mode (the first non-axisymmetric or sinuous†) is
found. Model A is merely an extension to a cylindrical geometry of the model used
in Villermaux (1998) which, in spite of being able to predict the breakup frequencies
measured in their experiments, is unable to explain the different breakup features
present in ours. This is due to the fact that in our case the gas-to-liquid momentum
ratio (Mr = ρgUg

2/ρlUl
2) is very close to unity, which makes the role of the basic

liquid velocity profile (specifically the liquid shear layer) essential in explaining the
appearance of the modes that lead to the jet breakup, the gas shear layer being merely
a source of energy for these perturbations to grow faster. This role of the liquid shear
layer is clearly shown in the model described next.

Model B: coflowing liquid and gas streams, where basic velocity profiles have been
computed in § 3, but perturbations are introduced only in the liquid jet assuming that
the gas stream remains unperturbed. The interest of this case lies in the fact that
a non-uniform liquid velocity profile modifies Rayleigh’s results substantially, and
new modes appear associated with the existence of a boundary layer near the liquid
surface; to the best of our knowledge these modes have not been explored previously
in the literature.

5.1. Model A: stability of a liquid jet of constant radius with uniform velocity profile
surrounded by a coaxial gas stream

The basic solution for this problem obtained with the method of lines described in
§ 2 is represented in figure 10, and compares well with the asymptotic results given by
Glauert and Lighthill (Rosenhead 1963) for the same problem. As shown in the figure,
velocity profiles with δ . 0.1 approach closely those of a Blasius boundary layer,
while for larger δ curvature effects become important and the profiles differ from
the Blasius ones. Figure 11(a, b) represent the real and imaginary parts respectively
of the dimensionless eigenfrequencies Ω = ωκ = Ω̄R0/U∞ versus the dimensionless
wavenumber κ = k̄R0 of the unstable axisymmetric (m = 0) modes for basic velocity
profiles characterized by small dimensionless boundary layer thicknesses δ. Notice
that, as δ and κ increase the unstable modes are excited at ever larger frequencies
Ωr – see figure 11(a). However, the behaviour with δ of the temporal growth rate Ωi
is more complicated. In effect, as figure 11(b) shows, the area under the curves Ω
versus κ first increases dramatically from δ = 0 up to δ = 0.001, and then decreases
monotonically with increasing δ. The values corresponding to the Kelvin–Helmholtz
(K–H) model lie on the curve labelled as δ = 0 in figure 11(b). Observe that, although
δ � 1 in figure 11(b), the Kelvin–Helmholtz results are not reproduced in the whole
range of wavelengths except for the smallest values of δ (δ = 10−5). Basic velocity
profiles with larger δ give growth rates that deviate substantially from the K–H model
at short wavelengths: they are larger for 0 < δ 6 0.015 and lower for δ > 0.015, while
all velocity profiles give growth rates similar to the K–H ones at large wavelengths.
This fact suggests that, even for small thicknesses, the structure of the boundary layer
plays a crucial role in the development of the instability of perturbations of short
wavelengths due perhaps to the existence of a critical layer (Miles 1957) located at a
radius such that Ugκ ' Ωr where the transfer of energy between the basic flow and

† The first non-axisymmetric mode (m = 1) is usually termed sinuous mode in the literature.
However, we have named them helicoidal since the dependence on z and θ of the eigenfunctions
make the radius of the jet of the form R = R0 +R cos (kz+θ) for m = 1. A planar, sinuous structure
can be recovered if we add modes with m = ±1.
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Figure 10. Computed basic gas velocity profiles for model A (dashed lines) and the Blasius profile
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Figure 11. (a) Real and (b) imaginary eigenfrequencies of axisymmetric modes for different values
of δ; (c) real and (d) imaginary eigenfrequencies of the axisymmetric (continuous lines) and the
helicoidal modes (dashed lines) for different values of δ; We = 15 and M = 850.

the perturbation modifies substantially the dynamical effects involved in the K–H
mechanism. Figures 11(c) and 11(d) shows Ωr and Ωi as functions of κ for unstable
axisymmetric (continuous lines) and helicoidal (m = 1) modes obtained with basic
velocity profiles of small δ; only results for δ > 0.01 are presented since for smaller
δ the growth rates of helicoidal and axisymmetric modes turn out to be very similar.
Notice in figure 11(d) that helicoidal disturbances grow faster than axisymmetric ones
for larger wavelengths while the opposite occurs for shorter wavelengths (Yang 1992).

The boundary layer thicknesses required for the validity of the results discussed in
the above paragraph are so small compared to the liquid jet radius that this might



Linear stability of co-flowing liquid–gas jets 41

be far from realistic in some practical situations, as is the case in our atomization
experiments. In effect, δ decreases with increasing Re = U∞R0/νg , which for typical
atomization experiments with D0 ∼ 50 µm and U∞ ∼ 100 m s−1 is of the order of
Re ∼ 500, a value which is probably too low to very small δ. This is supported by
the experimental results shown in figure 8(a, b) which suggest values of δ larger than
0.1. Therefore we will consider now the case in which the boundary layer thickness
is of the order of the jet radius, δ ∼ O(1). We have performed the stability analysis
for three different basic velocity profiles computed at the stations z = 0.01, 0.05 and
0.1 for which the corresponding values of δ are δ = 0.46, 0.98 and 1.35 respectively.
Observe that the parallel flow condition is met for these values since we can estimate
from them (λ/δ̄)dδ̄/dz̄ = λ/(δR0Re)dδ/dz ∼ 0.1, where δ̄ = δR0, z̄ = R0 Re z are
the dimensional boundary layer thickness and axial distance. In these cases we have
found one family of unstable axisymmetric modes (m = 0) and two families of
unstable helicoidal modes (m = 1) with very different frequencies and growth rates.
Figure 12(a, b) shows the frequencies and growth rates of the axisymmetric modes
(continuous lines) and one family of helicoidal modes (dashed line) whose excitation
frequencies are of the order of the dimensionless capillary frequency Ωr ∼ (MWe)−1/2

for the values of We = 15 and M = 850 considered in this calculation. Observe in
figure 12(b) that the growth rates of the helicoidal modes are much less than those of
the axisymmetric modes, and that the latter nearly coincide for all values of κ with
those corresponding to the Rayleigh model. Both facts indicate that the boundary
layer is so thick that the dynamics of the gas stream has no influence on the instability
mechanism of the liquid jet, being the capillary effects responsible for the breakup
process. The frequencies and growth rates of the second family of unstable helicoidal
modes are represented in figure 13(a, b). Observe that their excitation frequencies, of
the order Ω ∼ O(1), are much larger than the capillary one, which indicates that
these modes have an hydrodynamic nature and will be called wake modes since they
are analogous to the ones found by Batchelor & Gill (1962) for the stability of a
far-field jet (notice that, since their stability analysis is temporal, Batchelor & Gill’s
results are not modified if a negative uniform velocity profile is added to the far-field
jet profile, which in turn is transformed in a wake velocity profile). As figure 13(b)
shows, the growth rates for the wake modes are of same order of magnitude as
the growth rates of the axisymmetric modes, but their group velocity is of order
cg/U∞ = dΩr/dκ ∼ 0.3 as estimated from figure 13(a), about twenty times larger than
that of the axisymmetric modes as estimated from figure 12(a). Thus the wake modes
travel so fast downstream along the liquid jet that they have no time to grow as much
as the capillary axisymmetric modes before leaving the jet, and therefore model A is
unable to predict the helicoidal breakdown of the liquid jet observed in atomization
experiments for sufficiently high Weber numbers.

5.2. Model B: stability of a liquid jet with no uniform velocity profile surrounded by an
unperturbed coaxial gas stream

In this simplified model, as well as in the next one, the liquid and gas basic velocity
profiles are the ones corresponding to figure 8(b) in the case of δ0 = 0.5 and ∆ = 0.15†.
However, in the stability analysis we have introduced perturbations only in the liquid
jet and held the gas stream unperturbed. We have found two families of axisymmetric

† Note that in the following, z is a parameter that determines the basic velocity profiles used in
the stability analysis.
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Figure 13. (a) Real and (b) imaginary eigenfrequencies for the wake modes. We = 15 and
M = 850.

(m = 0) unstable modes, and one family of helicoidal (m = 1) unstable modes which
appears only at sufficiently high Weber numbers.

The frequencies and growth rate of the first family of unstable modes, of capil-
lary type, are plotted in figure 14(a, b). Observe that the excitation frequencies in-
crease with increasing κ, and that the growth rates tend to the Rayleigh limit as
z increases (the liquid velocity profile relaxes and becomes more uniform). The
attenuation of the growth rates with increasing non-uniformity of the liquid jet
velocity profile is supported by the results found by Leib & Goldstein (1986) in
their analysis of the Rayleigh problem with a basic parabolic velocity profile and
later proved theoretically by Miyazaki & Kubo (1995) for a related problem. The
second family of unstable modes is also of axisymmetric nature and their frequen-
cies and growth rates are represented in figure 14(c, d). Observe that, contrary to
the capillary modes, their growth rates decrease as the velocity profile flattens, and
so this family will be called axisymmetric hydrodynamic modes, their existence be-
ing associated with radial velocity gradients in the bulk of the liquid jet and not
to capillary forces. Notice that, although both capillary and axisymmetric hydro-
dynamic modes coexist, their growth rates are markedly different depending on
the value of z. Finally, at sufficiently high Weber numbers a third family of un-
stable modes of helicoidal nature appear, their growth rates being represented in
figure 14(e) where we compare them with those of the axisymmetric hydrodynamic
modes at different Weber numbers. Observe that as We increases (the relative im-
portance of surface tension decreases) the growth rates of the helicoidal modes
increase and become similar to those of the axisymmetric hydrodynamic modes,
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which indicates that the nature of the helicoidal modes is also hydrodynamic. How-
ever, as We decreases the differences between these two families sharpens, and it
is seen in figure 14(e) that while there is a minimum value of We below which
the helicoidal modes become stable, we have not found such a lower bound for
the axisymmetric hydrodynamic modes. The difference of behaviour at low We can
be explained on physical grounds if one takes into account that a high surface
tension tends to inhibit the appearance of a helicoidal shape but may favour the
instability of an axisymmetric shape. Therefore, using this model we have identi-
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fied two different kinds of modes that have a completely different nature to the
ones (Rayleigh–Taylor) previously reported in the literature. The origin of these new
modes is related to the existence of a strong shear layer in the liquid phase, and the
effect of the perturbations in the gas is only to increase the growth rates of these
modes due to the work of the gas pressure forces over the jet surface (Lin & Chen
1998).
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5.3. Model C: Stability of a liquid jet with no uniform velocity profile surrounded by a
coaxial gas stream

In this section we present the results of the stability analysis performed taking into
account both liquid and gas velocity profiles, computed self-consistently in § 3, and
introducing perturbations in both streams. Typical frequencies and growth rates of
the modes which appear in this case are represented in figures 15 and 16. Figure 15(a)
shows the growth rates for different types of modes whose frequencies are of the
order of the capillary one (Ul/R0). Within this group there are two axisymmetric
modes (denoted by CAP and CHY) and two helicoidal modes (denoted by CHA
and CHB). As will be seen shortly the modes CAP can be related to the capillary
axisymmetric modes previously found in models A and B, the modes of the type
CHY to the axisymmetric hydrodynamic modes of model B, and the modes CHA
and CHB to the helicoidal modes of A and B respectively. The growth rates of these
modes are represented in figure 15(b) (notice that the values corresponding to the
modes CHA have been multiplied by a factor of 102, and the values corresponding to
CHY have been divided by 5). Figure 16(a, b) shows the fifth family of modes found
with model C, labelled CWK, whose frequencies and growth rates are of the order of
the wake modes found in model A – see figure 13. It is of interest to analyse further the
relation between the two simpler cases A and B and the more realistic model C. For
instance, figure 17 shows the growth rates of capillary axisymmetric modes computed
for basic velocity profiles at different z-stations, for the model A and for the model C
(type CAP); observe that while model A yields Rayleigh’s solution at all stations, the
growth rates of model C are substantially lower, depend on the velocity profile, and
approach Rayleigh’s only in the limit z →∞. Although the modes CHA of figure 15
are clearly analogous to the helicoidal modes of model A – figure 12 – we will not
consider them further owing to their small growth rates. The growth rates of the
capillary axisymmetric modes for models B and C (type CAP) at different z-stations
are shown in figure 18(a) where the larger values obtained for model C are attributed
to the effect of the supply of energy that the perturbed gas pressure exerts over the
jet surface which is absent in B. This effect can be also seen in figure 18(b) for modes
of type CHY and the axisymmetric hydrodynamic modes of model B. Figure 18(c)
is analogous to figure 14(e) and shows the behaviour with the Weber number of the
hydrodynamic helicoidal modes of both model B and model C (type CHB); observe
that, as pointed in § 5.2, there exists a minimum value of the Weber number below
which the modes are stable, and the same happens for the CHB modes, although the
cutoff Weber number is lower than in the case of model B. This must be attributed
to the effect of the perturbations of the air stream which make the growth rates of
the CHB modes higher than those of the model B modes, although the difference in
growth rates gets lower as We increases.

Next we will analyse the behaviour of the modes of model C for variations of
downstream distance z (flattening of the velocity profiles), the Weber number, We,
and the liquid-to-gas density ratio M. Figure 19 shows the frequencies and growth
rates of the modes CAP, CHY and CHB at different z stations. As the velocity
profiles flatten the growth rates of the capillary axisymmetric modes (CAP) increase,
which reflects the capillary nature of these modes, while the growth rates of the
helicoidal and hydrodynamic (CHB and CHY) modes decrease, which reflects their
hydrodynamic nature. Figure 20 shows the growth rates of the capillary axisymmetric,
helicoidal and hydrodynamic modes for model C, for different Weber numbers and
at a given station z = 0.05 (the helicoidal modes for We = 10 are not shown since
their growth rates are negligible within the scale of the figure). The type of mode with
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highest growth rates depends on the Weber number, that is, on the relative importance
of surface tension: for instance, for We = 10 the capillary axisymmetric mode is the
one with highest growth rates, for We = 15 it is the axisymmetric hydrodynamic
mode, while for We = 20 the growth rates are highest for the helicoidal mode.
Figure 21 shows the influence of the liquid-to-gas density ratio M and the growth
rates of the CAP, CHB and CHY modes. As M increases the growth rates of the
CAP and CHY modes decrease while those of CHB increase. This type of behaviour,
which is expected for the capillary axisymmetric modes, reveals that the liquid inertia
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favours the development of hydrodynamic instabilities of helicoidal type instead of
axisymmetric ones.

6. Comparison with experiments
In this section the numerical results discussed in § 5 are compared with those

obtained in the series of atomization experiments shown in figure 22(a–f). The
experiments have been performed with the atomization device sketched in figure 2(a)
using a fixed flow rate of water of Q = 30 ml h−1 and an increasing pressure difference,
∆p, between the air in the chamber and the atmosphere. The images were captured
using a CCD camera with a light intensifier which allows an exposure time as short as
10 ns. In figure 22, parts (a–c, f) show an axisymmetric breakup, while in (d) and (e) the
jet breaks in a helicoidal mode. For the lowest ∆p, corresponding to figure 22(a), the
measured breakup wavelength is very close to Rayleigh’s which indicates a capillary
axisymmetric instability mechanism which can be explained if one takes into account
that the velocity profiles flatten in both the gas and the liquid for decreasing ∆p, giving
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Figure 22. Photographs showing the different atomization regimes for a constant Q = 30 ml h−1:
(a) ∆p = 5 KPa; Ul = 3.2 m s−1; Ug = 92 m s−1; M = 800; Re = 233; We0 = 6.3; κ = 0.68; zr > 0.3.
(b) ∆p = 10 KPa; Ul = 4.5 m s−1; Ug = 127 m s−1; M = 739; Re = 295; We0 = 11; κ = 0.77;
zr ∼ 0.17. (c, d) ∆p = 20 KPa; Ul = 6.3 m s−1; Ug = 173 m s−1; M = 638; Re = 387; We0 = 20; and
for (c) κ = 1.02; zr ∼ 0.13; and for (d) κ = 0.66; zr ∼ 0.12; (e, f) ∆p = 30 KPa; Ul = 7.75 m s−1;
Ug = 208 m s−1; M = 556; Re = 454; We0 = 28; and for (e) κ = 0.68; zr ∼ 0.085; and for (f)
κ = 1.21; zr ∼ 0.09; (zr denotes the non-dimensional breakup length).

rise to nearly uniform liquid velocity profiles without enough shear to promote the
growth of the hydrodynamic and helicoidal modes. As ∆p increases in figure 22(b) the
liquid and gas streams accelerate and sharper boundary layers develop in both fluids,
which leads to a breakup wavelength shorter than Rayleigh’s. Breakup wavelengths
shorter than Rayleigh’s have also been predicted by previous works such as that of Lin
& Chen (1998); however the modes that lead to the growth of short wavelengths in
their investigation are, like those also present in our model A, due to the effect of gas
inertia, whereas in our experimental situation the shear in the liquid is what controls
the breakup process. This statement is supported by our numerical results if one takes
into account that the effect of sharper boundary layers is equivalent to considering
smaller values of z in figure 19, in which case the axisymmetric hydrodynamic
modes grow faster than both the capillary axisymmetric and the helicoidal ones. The
effect of non-uniformity of the velocity profiles strengthens for even larger ∆p in
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figure 22(c), for which the corresponding values of z in figure 19 are so low, and also
the Weber number so large, that the capillary modes play no role in the breakup
process which must be either of axisymmetric hydrodynamic or of helicoidal type.
In fact, what we see in figure 22 is that, for the given ∆p, the breakup mode is
predominantly the axisymmetric hydrodynamic one (figure 22c) and the helicoidal
one (figure 22d) occasionally overcomes the axisymmetric one. This can be easily
explained on the basis of the numerical results shown in figure 23. For this We value,
the axisymmetric mode still grows much faster than the helicoidal one. Notice also
that the breakup wavelengths measured experimentally in figure 22(c, d), κ = 1.02 and
κ = 0.66 respectively, are in qualitative agreement with the dispersion relation maxima
shown in figure 23: the wavelengths of the helicoidal mode are larger than those that
correspond to the hydrodynamic mode. One can also experimentally observe a sharp
increase in the growth rate of the helicoidal mode for Weber numbers just above
the experimentally measured We = 20, in agreement with theoretical predictions.
As ∆p increases further no new type of breakup process is observed; the instability
mechanism is of hydrodynamic type and the jet breaks predominantly following
a helicoidal mode (see figure 22e), while one may only occasionally observe the
axisymmetric one (figure 22f). Since the way in which the jet breaks up depends
on uncontrolled upstream perturbations which are convected downstream, and on
nonlinear large-amplitude interactions with the surrounding gas stream, in these
photographs we restrict ourselves to showing experimental evidence of the newly
identified modes only qualitatively.

7. Conclusions
A linear temporal inviscid stability analysis of a liquid jet flowing with a coaxial

gas stream has been performed. We have used in the analysis self-consistent basic
velocity profiles obtained by integrating the coupled system of parabolized Navier–
Stokes equations for both the gas and liquid streams formulated in § 2. As described
in § 2, the integration has been carried out numerically with an easy-to-implement
method of lines, and experimental results for the downstream evolution of the flow
have served as a guide to choose appropriate values of the parameters characterizing
the basic velocity profiles at the initial station (exit of the pressurized chamber) as
explained in § 3. In a conventional way we have obtained in § 4 the set of linear



50 J. M. Gordillo, M. Pérez-Saborid and A. M. Gañán-Calvo

equations for the stability analysis, which we have applied to three different models
in § 5.

The first model we have considered (§ 5.1) is that of a liquid jet of constant radius
with uniform velocity profile surrounded by a gas stream which develops a boundary-
layer-type velocity profile. We have found the same two types of modes, capillary and
helicoidal, reported in the literature, but their growth rates strongly depend on the
thickness of the boundary layer. In fact, for boundary layer thicknesses of the order
of the jet radius (which is the most common situation in our experiments) the Kelvin–
Helmholtz instability mechanism is not relevant, and the growth rates follow closely
Rayleigh’s curve in the case of axisymmetric disturbances (capillary modes), while the
helicoidal modes have negligible growth rates. For thinner boundary layers we find
the Taylor atomization regime (Lin & Chen 1998), but the existence of another length
(δ) in the problem (Villermaux 1998) modifies substantially the growth rates obtained
with the Kelvin–Helmholtz model. In fact, the classical Kelvin–Helmholtz dispersion
relation is obtained only for the thinnest boundary layers; for larger thicknesses,
but still small compared to the jet radius, the growth rates differ appreciably from
Kelvin–Helmholtz results. Besides the capillary and helicoidal modes, there exists a
third family of modes, which we have called wake modes, whose excitation frequencies
are of the order of U∞/R, which denotes their hydrodynamic origin, and their growth
rates, which are of the order of those of the capillary modes, are not influenced much
by the Weber number nor the boundary layer thickness.

In § 5.2 we have considered a second simplified model consisting of a liquid jet
with a non-uniform velocity profile coupled to an external gas stream. In this case, in
which we have assumed that the gas stream remains unperturbed under disturbances
introduced in the liquid, the stability analysis reveals three different families of
modes, two of them axisymmetric and the third one helicoidal. The first family of
axisymmetric modes is of capillary type, and was also present in the previous model.
The second family of axisymmetric modes, as well as the helicoidal family, are of
hydrodynamic origin, as can be deduced from the behaviour of their growth rates
which, for sufficiently high Weber numbers, increase with We and with the sharpness
of the velocity profile. These modes, to our knowledge, have not been described
previously in the literature.

Finally, in § 5.3 we have considered a more realistic model corresponding to the
atomization experiments of figure 22. We have found essentially the same types of
modes described for the two previous simplified models, although the growth rates
are substantially modified with respect to the previous cases due to the influence of
the structure of both liquid and gas basic velocity profiles and to the inclusion of
perturbations in both streams. We have used the results of this model to explain the
experimental results shown in figure 22(a–f) and concluded that, while for low gas
velocities (low ∆p) the breakup process is of capillary type according to Rayleigh’s
results, for larger ∆p the hydrodynamic modes, axisymmetric and helicoidal, come into
play and dominate the breakup process. Since the modes of hydrodynamic origin only
appear theoretically when we consider the existence of a non-uniform velocity profile
in the liquid jet, in our opinion no model including a trivial (constant) basic velocity
profile in the liquid jet can describe correctly the breakup process in atomization
experiments, at least in the case of gas-to-liquid momentum ratios close to one.

As a final remark we would like to stress once more the crucial role played by the
basic flow in the stability analysis of parallel streams as pointed out by Lin & Reitz
(1998), since both the type of modes to be predicted and their growth rates are very
sensitive to it.
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